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The unprecedented potential of standard and new next-generation sequencing applications and

methods to explore cancer genome evolution and tumor heterogeneity as well as transcription networks

in time and space shapes the development of next-generation therapeutics. However, biomedical and

pharmaceutical research for overcoming heterogeneity-based therapeutic resistance is at an important

crossroads. Focus on linear transcription-based drug development targeting dynamics of simple

intrapatient structured genome diversity represents a realistic medium-term goal. By contrast, the

discovery of nonlinear transcription drugs for targeting structural and functional genome and

transcriptome heterogeneity represents a long-term rational strategy. This review compares

effectiveness, challenges and expectations between linear and nonlinear drugs targeting simple

intrapatient variation and aberrant transcriptional biocircuits, respectively.
Introduction
State-of-the-art
Overcoming resistance to available linear transcription-based

drugs [1], which is associated with high rates of metastasis and

death [2], represents a top priority of the emerging genome

network medicine [3]. However, shifting from linear transcrip-

tion dogma [4] to nonlinear transcription-based discovery of

next-generation drugs [5] is at present an unrealistic clinical

approach, representing a big challenge for genome and network

science [6,7]. Despite advances in multimodal treatment, includ-

ing surgery, radiotherapy, chemotherapy and targeted drugs

(http://www.nccn.org/professionals/physician_gls/f_guidelines.

asp#site), identification and establishment of eight hallmarks of

cancer [8] and cancer genomics, progress in the post-genomic era

remains slow, which is outlined in two critical reviews by Klein [9]

and Vogelstein et al. [10]. Excellent basic science research in the

dynamics of genomic clone evolution-based tumor heterogeneity

in time and space and transcriptional biocircuits could be trans-

lated into the clinic shaping the future of genome network

medicine (GNM) [3].
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Time factor dynamics
The time factor is the most crucial variable for understanding

cancer genome and tumor evolution-based development of het-

erogeneity, therapeutic resistance and metastasis. The latest evi-

dence on dynamics of noncoding genome functionality [11],

transcriptional networks [12,13], cancer genomic clone evolution

[14] and emerging heterogeneity at the microscopic level is

reflected at tumor growth and metastasis [2,15]. Genomic clone

evolution-based heterogeneity in time and space, either at delay-

ing diagnosis before treatment or in response to systemic therapy,

can be associated with therapeutic resistance and metastasis [14].

The comprehensive analysis of intratumor heterogeneity and

circulating genomic clone heterogeneity (cGCs) can reveal the

intrapatient (IP) genomic diversity [16,17] that is crucial for pre-

dicting and preventing therapeutic resistance.

New NGS application
Changing clinical NGS strategy

NGS has revolutionized biomedical research [18] – but only re-

cently. The latest NGS applications allow accurate evaluation of

spatiotemporal tumor evolution and heterogeneity-based predic-

tion and prevention of therapeutic resistance-based metastasis.
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Simple and complex NGS applications including multiregional bi-

opsies [19] in combination with circulating tumor DNA (ctDNA)

sequencing analyses [20] and single-cell genome technique [16,21]

provide the unprecedented potential not only for the identification

of next-generation biomarkers but they also shape a new horizon in

the development of two therapeutic strategies. The first realistic

approach is based on simple linear transcription drugs and it is

expected to increase the number of these targeted agents dramati-

cally. The second nonlinear transcription-based strategy represents a

future goal based on recent ENCODE project evidence [13] of dy-

namics of transcriptional biocircuits. This review discusses and com-

pares the potential, challenges and future expectation of IP-based

linear drugs and comprehensive nonlinear transcription agents.

Modern targeted linear drugs
Targeted therapy has revolutionized systemic treatment by target-

ing almost exclusively cancer cells with specific genetic alterations

without affecting normal cells. Pre-treatment single-biopsy-based

genetic testing is used as a biomarker provider to identify individ-

ual patients with a mutated or amplified gene. This interpatient-

based personalized cancer treatment by using targeted drugs to

inhibit the corresponding deregulated signaling pathway repre-

sents an important advance in modern oncology [22]. In a recent

comprehensive review, Rask-Andersen et al. [1] reported that all

drugs that had been developed up until 2010 have been based on

simple single-gene linear transcription dogma [4]. On the basis of

this dogma, the list of FDA-approved currently available drugs has

rapidly grown to 64 agents (http://www.fda.gov/Drugs/

InformationOnDrugs/ApprovedDrugs/ucm279174.htm). Table 1

summarizes the FDA-approved targeted drugs after 2010.

One of the most successful paradigms of translational research

has been the monoclonal antibody trastuzumab (Herceptin1, Gen-

entech) targeting the human epidermal growth factor receptor 2

(HER2) signaling pathway for breast cancer and gastric cancer [23]. A

further development in this traditional single-pathway research

field is the trastuzumab–emtansine conjugate drug T-DM1 that

has prolonged overall survival by 6 months, compared with trastu-

zumab plus classical chemotherapy in metastatic HER2-positive

breast cancer [24,25]. More recently, a long-term anticipated drug

for HER2-negative patients accounting for 75% of all breast cancers

has become a reality. Palbociclib (IBRANCE1, Pfizer), an inhibitor of

cyclin-dependent kinase (CDK)4 and CDK6, has recently been

approved by the FDA for use in combination with letrozole for

the treatment of postmenopausal women with estrogen receptor

(ER)-positive, HER2-negative metastatic breast cancer [26].

Limitation of linear drugs
Despite these advances with targeted drugs (Table 1), there has

been a current general consensus that all these single-biopsy linear

transcription-based agents are characterized by temporary and

moderate antitumor effectiveness. A new horizon in overcoming

this therapeutic resistance represents a new roadmap in under-

standing cancer dynamics of cancer genome evolution and tumor

heterogeneity in time and space.

Therapeutic resistance and tumor heterogeneity
Explaining primary and secondary therapeutic resistance, the

roadmap of tumor-evolution-based heterogeneity has become a
664 www.drugdiscoverytoday.com
top priority in biomedical and pharmaceutical research. Following

Darwinian principles, the emergence of mutation in response to

therapy develops genomic clones and cancer cells resistant to

primary therapy. Shifting from simple interpatient diversity, ge-

nomic difference between patients with the same tumor stage and

cancer type, to much more complex dynamics of IP diversity [27]

in time and space we could approach next-generation personalized

cancer medicine (NGPCM).

Currently, cancer is defined as a disease of the genome. Intra-

patient diversity is termed here as the total set of cancer-associated

genome changes in an individual patient. How could dynamics of

intrapatient diversity evolution be discovered? Intrapatient geno-

mic diversity includes intratumor heterogeneity, cGC and occult

micrometastasis in patient without distant metastasis (stage M0)

or with metastasis (M1) in the metastatic setting. Simple and

complex NGS application and methods have been recently devel-

oped to identify dynamics of intrapatient diversity. For example,

intratumor heterogeneity of primary tumors can be revealed with

multiregional biopsy-based NGS [20,28]. Yates et al. [29] performed

multiregional whole genome sequencing (WGS) in 50 primary

breast cancers. The diversification of subclonal structure and

tumor evolution can explain resistance to chemotherapy. The

authors reported the importance of subclonal diversity in predict-

ing therapeutic resistance and its evaluation in clinical trials of

primary breast cancer.

Dynamics of circulating genomic clones
Noninvasive techniques have recently been reported for studying

clonal evolution in response to therapy. Murtaza et al. [20] recently

reported the establishment of cell-free ctDNA followed by whole

exome sequencing (ctDNA–WES) proof-of-principle that could

predict therapeutic resistance and recurrence by identifying the

emergence of mutations with repeated ctDNA–WES. Therefore,

serial ctDNA–NGS in the follow-up could be used for biomarkers to

predict secondary therapeutic resistance and prevent tumor re-

lapse [30–32]. Intrapatient genomic and cellular variation requires

the comparison between intratumor and cGC in an individual

patient to reveal whether clonal diversity undetectable in the

primary tumor or the emergence of mutation in cGC is the cause

for therapeutic resistance-based recurrence.

A further complexity in evaluating tumor heterogeneity can be

the genomic difference even between individual cancer cells [33].

A long-held dream for accurate assessment of cellular diversity

appears now a realistic goal [27] using single-cell techniques and

the latest sequencing technologies. Wang et al. [21] developed and

reported a whole-genome single-cell sequencing innovative tech-

nique, termed Nuc-seq. This is an exciting future perspective but at

the present time it remains in the preclinical stage. Intratumor

heterogeneity-based therapeutic resistance prediction can be

much more complex if we take into account the diverse and

interacting evolving clones reflecting a tumor ecosystem

[17,27,34].

Next-generation personalized cancer therapeutics
Given the extensive genomic structural variation and tumor het-

erogeneity, completion of cancer driver genes for its cancer type is

a basic research goal fundamental to achieve personalized cancer

medicine (PCM). Classification of these genes [35] into eight

http://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm279174.htm
http://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm279174.htm


Drug Discovery Today � Volume 21, Number 4 �April 2016 REVIEWS

TABLE 1

New targeted anticancer drugs approved by the FDA after 2010 until November 2015.

Type of cancer Drug FDA approved Therapeutic target

Cutaneous melanoma Ipilimumab October 2015 Human cytotoxic T-lymphocyte antigen 4

(CTLA-4)

Metastatic squamous non-small-cell lung cancer

(NSCLC)

Nivolumab March 2015 Programmed death-ligand 1 (PD-L1) and

Programmed death-ligand 2 (PD-L2)

Metastatic squamous NSCLC Pembrolizumab 2015 Programmed death receptor-1 (PD-1)

Unresectable or metastatic melanoma Pembrolizumab September 2014 PD-1

Nivolumab December 2014 PD-L1 and PD-L2

Metastatic colorectal cancer Trifluridine/

tipiracil

combination

September 2015 Anti-vascular endothelial growth factor (VEGF)

biologic product, and an anti-epidermal growth

factor receptor (EGFR) monoclonal antibody

Locally advanced basal cell carcinoma (BCC) Sonidegib July 2015 Inhibits the Hedgehog (Hh) signaling pathway

� Metastatic colorectal cancer (mCRC) Ramucirumab � April 2015 Antibody that binds to human VEGF-R2

� Metastatic NSCLC � December 2014

� Advanced gastric or GEJ adenocarcinoma refractory � April 2014

Breast cancer Palbociclib February 2015 Cyclin-dependent kinase (CDK) 4 and 6, in

HER2-negative patients

Multiple myeloma Panobinostat February 2015 Histone deacetylase inhibitor

Thyroid cancer Lenvatinib February 2015 Kinase inhibitor

Chronic lymphocytic leukemia Ibrutinib February 2014 Kinase inhibitor

Relapsed or refractory B cell precursor acute

lymphoblastic leukemia (R/R) ALL

Blinatumomab December 2014 Bispecific CD19-directed CD3T cell engager

Ovarian cancer Olaparib December 2014 BRCA1/2

Chronic lymphocytic leukemia (CLL) Idelalisib July 2014 Kinase inhibitor

Relapsed or refractory peripheral T cell lymphoma
(PTCL)

Belinostat July 2014 Histone deacetylase inhibitor

Anaplastic lymphoma kinase (ALK)-positive

metastatic NSCLC

Ceritinib April 2014 Kinase inhibitor

CLL Ofatumumab April 2014 CD20-directed cytolytic monoclonal antibody

Mantle cell lymphoma (MCL) CLL Ibrutinib February 2014 Kinase inhibitor

Melanoma Debrafenib/
trametinib

combination

January 2014 BRAF

CLL Obinutuzumab November 2013 CD20-directed cytolytic monoclonal antibody

NSCLC Afatinib July 2013 EGFR/ERBB2

Melanoma Trametinib May 2013 Mitogen-activated protein kinase kinase (MEK)1

Melanoma Debrafenib May 2013 BRAF

Metastatic basal cell carcinoma, or with locally

advanced basal cell carcinoma

Vismodegib January 2012 Hedgehog pathway inhibitor

Advanced renal cell carcinoma Axitinib January 2012 Kinase inhibitor

NSCLC Crizotinib 2011 Anaplastic lymphoma kinase (ALK)

Hodgkin lymphoma, anaplastic large cell
lymphoma (ALCL)

Brentuximab
vedotin

August 2011 CD30-directed antibody–drug conjugate

Melanoma Vemurafenib August 2011 BRAF

Melanoma Ipilimumab March 2011 Human CTLA-4

All these targeted drugs approved by the FDA were assessed in November 2015 at the following link: http://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm279174.htm.
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categories according to the corresponding hallmarks of cancer

(deregulation of cell survival, growth, proliferation, apoptosis,

angiogenesis, metabolism, invasion and metastasis) [8] can be

useful in the clinic. For example, identifying intrapatient genes

involved not directly in cell survival, apoptosis and metastasis but
indirectly in pathways such as angiogenesis or metabolism could

improve therapeutic decisions by selecting a combination of drugs

inhibiting all these pathways. This strategy is suitable for a linear

drugs approach rather than a nonlinear druggable targets discov-

ery concept.
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The evidence on dynamics of genomic clone evolution and

tumor heterogeneity [14] can explain therapeutic resistance and

recurrence in patients with completed tumor resection (R0) in the

adjuvant setting (M0) or disease progression in the metastatic

setting (M1). The IP diversity-based NGPCM shapes two future

strategies in the discovery of next-generation drugs. The first

therapeutic strategy on drug discovery continues to be based on

linear transcription dogma [1] but it takes into account dynamics

of simple IP diversity. This medium-term goal in the discovery of

linear drugs is driven by simple biopsy-based NGS approach and

novel NGS application combined with breakthrough methods to

reveal simple IP dynamics in a spatiotemporal manner. The sec-

ond, more-distant-future approach of nonlinear transcription-

based drug discovery aims to disrupt transcriptional networks.

Linear personalized therapeutics
Breakthrough next-generation technologies provide two direc-

tions in the development of personalized novel linear drugs.

The first one is based on the standard single biopsy and the second

strategy is driven by dynamics of IP diversity.

Single-biopsy-based NGS in the discovery of new linear drugs
Single-biopsy NGS has been the standard approach in large studies.

Many novel cancer driver genes, some of which might be of

clinical utility for use as biomarkers or therapeutic targets, have

been identified with WES (Table 2) [35–47]. Clinically more im-

portant, although more complex than WES, are WGS studies

that have already discovered 78 novel genes and 19 potential

WGS-based therapeutic targets (Table 3) [39,40,48–59].

Limitations
Despite a dramatic increase of novel NGS-based identification of

cancer genes (Tables 2 and 3), including 117 in WES and 78 in

WGS, there has been skepticism regarding the validation and

clinical utility of these genes. Indeed, based on the largest WES

study currently available on 4742 samples in 21 tumor types and

extensive heterogeneity accessed, Lawrence et al. recommend

larger studies of 600–5000 samples per tumor type, for achieving

a statistical power in discovering novel robust biomarkers and

therapeutic targets [35]. Although this NGS-based concept can

lead to completion of the cancer genes list, it is questionable

how many of these new discoveries could be translated into the

clinic as biomarkers and/or therapeutic targets. Another impor-

tant disadvantage of single-biopsy-based NGS is that this analy-

sis does not take into account intratumor heterogeneity and

cGC diversity in response to therapy. Recent advances in NGS

application allowing the dynamics of IP diversity are discussed

below.

Targeting dynamics of intrapatient heterogeneity
Breakthrough NGS applications in combination with novel meth-

ods, empowering the discovery of dynamics of IP diversity, provide

a realistic approach in achieving two crucial translational goals: to

use IP diversity first for biomarkers to predict therapeutic resis-

tance; and to target IP structural genome diversity with available

and new, developing linear drugs. Fig. 1 delineates a medium-term

step-by-step strategy to simple IP structural genome diversity-

based prediction and prevention of therapeutic resistance to linear
666 www.drugdiscoverytoday.com
drugs. This approach also provides the potential for dramatic

increase of the linear drugs list.

Primary and secondary therapeutic resistance rates are currently

high. Potential solutions for overcoming this failure provide the

identification of intratumor and circulating genomic clone diver-

sity (Table 4). Primary therapeutic resistance in R0M0 patients

could be predicted by comparing multiregional-biopsy-based NGS

for intratumor heterogeneity of the primary cancer with ctDNA–

NGS-based identification of cGC diversity. A similar approach for

M1 patients is shown in Fig. 1 by comparing WGS-based analysis in

multiple solid and liquid biopsies between responder and non-

responder patients for the identification of the genome set of

changes between primary tumor, metastatic cancer(s) and cGCs.

This simple IP genome diversity identification could predict ther-

apeutic response. Moreover, it can lead to the discovery of multiple

novel linear-drug-targeted dynamics of IP diversity. Collectively, a

more effective targeting of IP diversity could result from a combi-

nation of targeted drugs available and should be developed from

single-biopsy-based and IP-diversity-based agents.

Complex dynamics of genomic clones diversity-based develop-

ment of secondary resistance after initial response could be

identified with simple serial ctDNA-based WES–WGS analysis

[20,30–32]. However, comparison of the emergence of structural

genome changes in cGCs with intratumor heterogeneity is essen-

tial to reveal whether rare subclonal cell populations or even

individual cells within a primary tumor or cGCs diversity in

response to therapy are responsible for acquired resistance. This

simple intrapatient diversity identification every 3 or 6 months

after treatment could precisely predict recurrence in R0M0

patients or metastasis progression in M1 patients before an oncol-

ogical event (recurrence or metastasis progression or death) occurs.

Further intrapatient structural genomic variation between groups

with or without recurrence in R0M0 patients as well as with or

without metastatic progression in M1 patients could provide

additional important information on the molecular mechanism

underlying acquired resistance. Once secondary resistance-based

occult has been accurately predicted before it occurs, the next big

challenge is the appropriate selection of effective linear drugs to

prevent an oncological event. This effective new treatment will

target the whole set of genome changes.

Rational design
The most rational way to prove whether the spatiotemporal IP

genome structural diversity will provide clinical benefits is within

current clinical trials for guidelines-based treated patients. The

advantage of this translational concept is that the identification of

IP structural diversity in time and space could subsequently be

tested in randomized controlled trials (RCTs) to access its robust-

ness as a biomarker to predict therapeutic resistance. Moreover,

targeting this IP structural heterogeneity with available and novel

drugs expected to be developed could prevent resistance-based

recurrence or metastasis progression. For example, standard and

new NGS applications have already identified a total number of

199 novel genes as well as 11 biomarkers and 19 therapeutic targets

(Tables 2–4). However, it should be emphasized that the clinical

implication of these NGS-based discoveries should be evaluated in

well-designed clinical trials to prove the clinical utility of novel

biomarkers and linear transcription-based drugs.
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TABLE 2

Standard single-biopsy-based whole exome sequencing (WES) studies in different cancer types.

Type of cancer Number of

patients

Findings Novel genes, clinical

implications

Refs

The largest WES analyses to date

21 tumor types 4742 in total

(35 patients
with rhabdoid

tumor – 892

patients with

breast cancer)

Identification of 33 genes that were not previously known

to be significantly mutated in cancer, including genes
related to proliferation, apoptosis, genome stability,

chromatin regulation, immune evasion, RNA processing

and protein homeostasis. Down-sampling analysis

indicates that larger sample sizes will reveal many more
genes mutated at clinically important frequencies.

Estimates that near-saturation can be achieved with

600–5000 samples per tumor type, depending on
background mutation frequency

33 [35]

WES studies in different cancer types

Prostate cancer 150 New genomic aberrations in PIK3CA/B, RSpondin, BRAF/

RAF1, APC, b-catenin, ZBTB16/PLZF

8 [36]

Pancreatic ductal

adenocarcinoma

109 Identification of multiple novel mutated genes in PDA, with

select genes harboring prognostic significance. KRAS

mutations are observed in >90% of cases. ARID1A marker of

poorer outcome. RBM10 mutation was associated with
longer survival. BRAF and PIK3CA mutations expanding the

spectrum of oncogenic drivers

5 [37]

Esophageal

squamous
cell carcinoma

104 AJUBA, ZNF750 and PTCH1 and the chromatin-remodeling

genes CREBBP and BAP1 in addition to known mutations

5 [38]

Breast cancer 103WES/

22WGSa
Analysis of WES and WGS showed the significance of CBFB

and translocation of MAGI3–AKT3. The mutations in CBFB,

RUNX1 and GATA3 suggest the importance of
understanding epithelial cell differentiation and its

regulatory transcription factors in breast cancer

pathogenesis

The use of ATP-competitive AKT

inhibitors should be evaluated in

clinical trials for the treatment of
fusion-positive triple-negative

breast cancers

[39]

Breast cancer 54 (and

15 WES)b
Mutations during clonal evolution occurred late in disease

progression explaining tumor heterogeneity

NR [40]

Testicular germ

cell tumors

42 Identified over-representation of novel mutations in the

tumor suppressor genes CDC27 and PRKRIR

2 [41]

Small cell lung

cancer

38 TP53, RB1 and PTEN were identified as significant genes.

TMEM132D, SPTA1 and VPS13B could be also involved in

SCLC development, with the products from their mutated

alleles being potential therapeutic targets in SCLC patients

36 [42]

Controlateral

breast cancer

25 For three patients, we identified shared somatic mutations

indicating a common clonal origin demonstrating that the

second tumor is a metastasis of the first cancer

0 [43]

Anaplastic

thyroid

carcinoma

22 Mutations in genes not previously associated with thyroid

tumorigenesis were observed (mTOR, NF1, NF2, MLH1,

MLH3, MSH5, MSH6, ERBB2, EIF1AX and USH2A), some of

which could be targets for future therapeutic intervention

10 [44]

Metastatic

melanoma

20 The first reported recurrent mutation causing a P131L

mutation in the RQCD1 (required for cell differentiation1

homolog) gene

1 [45]

Cervical
adenocarcinomas

15 Identification of several frequently mutated genes
including FAT1, ARID1A, ERBB2 and PIK3CA

4 [46]

Glioblastoma 3 Thirteen genes were found to harbor variants [platforms

found the genes PTCH1 (patched 1) and NF1

(neurofibromin1)]

13 [47]

Total 5427 NA 117c NA

Abbreviations: PIK3CA/B, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha; BRAF/RAF1, murine sarcoma viral oncogene homolog B; APC, Adenomatous polyposis

coli; ZBTB16/PLZF, zinc finger and BTB domain containing 16/ Promyelocytic leukemia zinc finger ortholog; PDA, Pancreatic Ductal Adenocarcinoma; ARID1A, AT-rich interactive domain-

containing protein 1A; RBM10, RNA Binding Motif Protein 10; AJUBA, Ajuba LIM protein; ZNF750, Zinc Finger Protein 750; PTCH1, Protein patched homolog 1; CREBBP, CREB Binding

Protein; BAP1, BRCA1 associated protein-1; CBFB, Core-binding factor subunit beta; RUNX1, Runt-related transcription factor 1; GATA-3, Trans-acting T-cell-specific transcription factor;

CDC27, Cell Division Cycle 27; PRKRIR, 52 kDa repressor of the inhibitor of the protein kinase; TP53, Tumor protein p53; RB1, retinoblastoma 1; PTEN, Phosphatase and tensin homolog;

TMEM132D, Transmembrane Protein 132D; SPTA1, Spectrin alpha chain, erythrocyte; VPS13B, Vacuolar Protein Sorting 13 Homolog B; SCLC, small cell lung cancer; mTOR, mammalian

target of rapamycin; NF1, Neurofibromatosis type 1; NF2, Neurofibromatosis type 2; MLH1, MutL homolog 1; MLH3, MutL Homolog 3; MSH5, MutS Homolog 5; MSH6, MutS Homolog 6;

EIF1AX, Eukaryotic translation initiation factor 1A, X-chromosomal; USH2A, Usher syndrome 2A; RQCD1, Required for Cell Differentiation1 Homolog; NR, not reported; NA, not applicable.
a This study includes 22 WGS also described in Table 3.
b This study also includes 15 WGS also included in Table 3.
c Only 33 meet the criteria set by The Lawrence Recommendation.
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TABLE 3

Standard single-biopsy-based whole genome sequencing (WGS) analyses in diverse cancer types.

Type of cancer Number of patients Number of novel genes

identified

Future potential biomarkers and

therapeutic targets

Refs

Pancreatic 100 2 (KDM6A and PREX2) Potentially yes [48]

Gastric 100 26 (MUC6, CTNNA2, GLI3,

RNF43 and others)

RHOA: potential druggable target

RNF43: druggable target for potential WNT
inhibitor

[49]

High grade serous

ovarian cancer

92 1 (ABCB1) ABCB1, MDR1 [50]

Colorectal 74 23 TCF7L2, TET2 and TET3

ERBB3

R-spondin gene fusions and TCF7L2, TET2

and TET3 potential therapeutic targets

[51]

Gastric 49 9 SLIT/ROBO [52]

Breast 46 5 (RUNX1, CBFB, MYH9, MLL3

and SF3B1)

Could produce therapeutic advances [53]

22 WGS (103 WES)a 3 (CBFB, RUNX1 and GATA3) The use of ATP-competitive AKT inhibitors

should be evaluated in clinical trials for the
treatment of fusion-positive triple-

negative breast cancers

[39]

15 WGS (and 54 WES)b NR Mutations during clonal evolution

occurred late in disease progression
explaining tumor heterogeneity

[40]

Hepatocellular 27 None No [54]

Melanoma 25 1 PREX2 New insights into tumor biology,

therapeutic resistance and developing
treatment regimens

[55]

Renal cell cancer 22 1 PI(3)K/AKT PI(3)K/AKT strong therapeutic target,

potential value of

MTOR and/or related pathway inhibitor

drugs

[56]

14 1 TCEB1, other newly

identified recurrent

mutational targets included
TET2, KEAP1 and MTOR

No [57]

Esophageal squamous

cell carcinoma

17 2 ADAM29 and FAM135B

MIR548 K

Potentially biomarkers ADAM29 and

FAM135B MIR548 K. Novel therapeutic

targets such as PSMD2, RARRES1, SRC,
GSK3B and SGK3

[58]

Chronic lymphocytic

leukemia

4 4 Notch 1 (NOTCH1), exportin

1 (XPO1), myeloid

differentiation primary

response gene 88 (MYD88)
and kelch-like 6 (KLHL6)

NOTCH1 and MYD88 mutations are

activating events

and potential therapeutic targets

[59]

Total 607 78 NA NA

Abbreviations: NGS, next-generation sequencing; WES, whole exome sequencing; WGS, whole genome sequencing, cGC, circulating genomic clone heterogeneity; NA, not applicable.
a The study on 22 WGS and 103 WES by Banerji et al. [39] has been included in Table 2. The conclusion of this study is that recurrent genomic fusion involving AKT3 suggests that the use of

ATP-competitive AKT inhibitors should be evaluated in clinical trials for the treatment of fusion-positive triple-negative breast cancers, a subtype where limited therapeutic options exist

beyond systemic cytotoxic chemotherapy.
b This study also includes 54 WES also included in Table 2.
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Challenges of the simple IP concept
In addition to the time period required to use IP dynamics as a

clinical concept of NGPCM, there is skepticism about the accuracy

of the simple IP strategy as a biomarker to predict therapeutic

resistance without taking into account the noncoding genome

regulatory role and functional heterogeneity as well as the tem-

porary and moderate effectiveness of all linear drugs – even those

that will be discovered over the coming years.

Nonlinear drugs
Biomedical research on drug development is currently at a

crossroads. Should current and future investigation on design
668 www.drugdiscoverytoday.com
of new drugs be shifted from simple linear transcription to a

highly complicated nonlinear transcription-based  therapeutics

development? Table 5 summarizes different challenges and

perspectives of linear versus nonlinear transcription drugs to

predict and prevent therapeutic resistance in medium-term and

long-term approaches. The fields of modern oncology and the

pharmaceutical industry continue to be based on the traditional

simple, single-gene-transcription dogma [2].

The list of targeted drugs receiving regulatory approval is

rapidly growing and the design of NGS-based drugs to be

developed in the near future continues to focus on linear

drugs. However, clinical evidence from RCTs and meta-analysis
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Linear drugs

Development of novel simple
transcription-based agents targeting
dynamics of intrapatient diversity

Next-generation therapeutics

Structural genome diversity Structural and functional genome
and transcriptome diversity

Nonlinear drugs

Discovering innovative drugs targeting
comprehensive intrapatient diversity for
disrupting dynamics of aberrant transcriptional
biocircuits

Intratumor 
heterogeneity

Circulating genomic
clone diversity

Simple intrapatient diversity Comprehensive intrapatient diversity

Drug Discovery Today 

FIGURE 1

Design of future projects (and those underway) to empower the discovery of new linear and nonlinear drugs on the basis of standard and new next-generation

sequencing (NGS) applications. Intratumor heterogeneity evaluation includes a medium-term approach with multiregional-biopsy-based whole exome

sequencing (WES) – whole genome sequencing (WGS) and a long-term goal with WES–WGS–RNA-seq-ChIP-seq, as well as single-cell genome NGS. Circulating

genomic clone diversity evaluation includes a medium-term approach for repeating ct-DNA-based WES–WGS in follow-up and long-term for ctDNA-based WES–
WGS–RNA-seq-ChIP-seq. Accurate simple intrapatient heterogeneity can result from the comparison between intratumor and circulating genomic clone

heterogeneity (cGC) diversity for each individual patient.

TABLE 4

Potential of multiple solid- and liquid-biopsy-based NGS to predict and reduce therapeutic resistance and relapse.

Cancer type No. of

patients/
samples

Technologies and

methods

Findings Clinical importance Refs/year

Multiregional biopsy-based NGS
Breast 50/303 Multiregional biopsy-based

WGS and targeted

sequencing of the PT

In 13/50 (26%) cancers, potentially

targetable mutations were subclonal.

Subclonal structural genomic

diversification

Intratumor heterogeneity

(ITH) could predict primary

therapeutic resistance (PTR)

but it requires clinical trial
evaluation

[29]/2015

Renal 4/30 Multiregional biopsy-based

WES from PT and MT

ITH in 67% of patients ITH predictable of PTR, clinical

trials required

[19]/2012

ctDNA-targeted sequencing
Pancreas 24/77 WES in 24 patients and

ctDNA-targeted

sequencing at various

time-points

Chromatin-regulating genes MLL,

MLL2, MLL3, ARID1A associated with

improved survival. Detection of

ctDNA was associated with
predictable recurrence 6.5 months

before it occurs

These MLL genes are

prognostic significance and

ctDNA could be used as

biomarker to predict
recurrence

[60]/2015

Breast, ovarian

and lung

6/19 WES in ctDNA-targeted

sequencing at various
time-points

Establishment of ctDNA-targeted

sequencing as proof of principle.
Emergence of mutated genes in

response to systemic therapy

identified by serial ctDNA sequencing

Prediction and potential

prevention of relapse several
months before it occurs

[20]/2013

Abbreviations: ctDNA, circulating tumor DNA; MT, metastatic tumors; NGS, next-generation sequencing; PT, primary tumors; WES, whole exome sequencing; MLL, myeloid/lymphoid or

mixed-lineage leukemia; ARID1A, AT-rich interaction domain 1A; ITH, Intratumor heterogeneity could predict primary therapeutic resistance (PTR).
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TABLE 5

Differences, potential challenges and future perspectives of linear and non-linear transcriptional drugs.

Dynamics of therapeutic resistance Linear transcription drugs Non-linear transcription drugs

Basic platform for the discovery of new drugs Simple, single-gene linear transcription dogma Design of non-linear transcription agents on the

basis of the ENCODE projecta

Targeted drugs More than 64 targeted agents approved by the

FDAb
NA

Non-coding genome functionality No consideration Yes

Next-generation biomarkers Simple intrapatient structural genomic diversity Comprehensive intrapatient structural and

functional genome and transcriptome

heterogeneity

Overcoming primary therapeutic resistance Multiregional biopsy-based WES/WGS (intratumor

heterogeneity) and comparison with ct-DNA-based
WES/WGS

Multiregional biopsy-based WES, WGS/RNAseq/

ChiPseq (intratumor heterogeneity) and
comparison with ct-DNA-based WES, WGS/

RNAseq/ChiPseq

Overcoming secondary therapeutic resistance Repeated ct-DNA-based WES/WGS Repeated ctDNA-based WES, WGS/RNAseq/

ChiPseq

Medium term Single biopsy-based NGS for the development of

new drugsc (Table 2)

Multi-biopsy-based WES/WGS discovery of new

linear drugs:

� Progress in transcriptome mapping and

transcriptional networks
� Primary therapeutic resistance reduction by

comprehensive targeting of intratumor

heterogeneity

� Comparison of transcriptional biocircuits

dynamics between health and cancer and

between resistant and non-resistant patients

�Secondary resistance reduction by serial ct-DNA
WES/WGS

Long-term therapeutic goals Targeting dynamics of intrapatient structural

genome diversity with available and new linear

drugs expected to be developed

Design of next-generation non-linear drugs

targeting dynamics of comprehensive structural

and functional intrapatient diversity and
disrupting aberrant transcriptional biocircuits

Abbreviations: WES, whole exome sequencing; WGS, whole genome sequencing; ct-DNA, circulating-tumor DNA; NA, not applicable.
a Expected results from the ongoing ENCODE project, (2012) ENCODE project: first evidence of functionality of most non-coding DNA and transcriptional biocircuits regulating human

normal genome – Genome Network Medicine.
b From the available list of 64 FDA-approved drugs.
c Seven druggable targets (Tables 2 and 3).
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underline a moderate and temporary effectiveness of almost all

linear drugs (Table 1) [8,9,15]. Although the medium-term

perspective of dynamics of simple IP structural genomic varia-

tion and targeting with linear drugs shapes a realistic NGPCM

approach and can improve treatment results over the coming

years, there is skepticism regarding the magnitude of long-term

survival in advanced disease. How could these moderate linear

concept-based expectations be overcome in a long-term ap-

proach? The ongoing ENCODE project of most noncoding

genome functionality, transcriptional networks [11,13] and

other individual functional genomics projects in health could

improve our understanding on whole genome and transcrip-

tome regulation. However, this goal might require a very long

time period. For example, approximately just ten transcription

factors (TFs) have been identified by the ENCODE [11] project,

whereas transcriptional regulation mapping and transcriptional

networks regulating multigene expression profiling are still in

their infancy [13]. How could this time period for understand-

ing genome and transcriptome comprehensive deregulation in

cancer be shortened? Fig. 1 shows how potential intelligent

solutions might shorten the time required to achieve compre-

hensive IP genomic diversity-based NGPCM exploiting the me-

dium-term project.
670 www.drugdiscoverytoday.com
Necessity of the network approach
High-quality basic scientific major discoveries on biological sys-

tem interactions [61] have revolutionized the research roadmap to

reach the medicines of the future [7]. Using NGS and systems

approaches, the ENCODE project in model organisms (modEN-

CODE) [62] and, two years later, in humans [11,13], as well as other

individual functional studies, has provided strong evidence on

molecular interaction and transcriptional biocircuits regulating

biological processes crucial for life [3,6,7,12,63,64]. This new

knowledge on pragmatic biology is crucial for designing new

and future diagnostic, predictive and therapeutic models for

achieving highly accurate and effective NGPCM. But, is such a

nonlinear strategy a realistic goal in the near future?

The ongoing projects will provide critical information on im-

proving our understanding on nonlinear transcriptional pro-

grams. By completing the list of cell- and tissue-specificity, TFs

and regulatory variation will allow the TF-binding sequence-spe-

cific sites leading to nonlinear transcription mapping in health.

Given that, at present, only 10% of TFs have been identified, this

transcriptome mapping along with progress in understanding

molecular networks will probably require a very long period.

Moreover, even more time will be needed for complete cancer

transcriptome mapping and subsequently health and cancer
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transcriptome comparison-based development of nonlinear drugs.

Alternative solutions to shorten this time are needed.

Alternative roadmap
>A smart alternative to shorten the required time is delineated in

Fig. 1. The WGS-RNAseq-ChIPseq package-based comprehensive

intrapatient diversity, including cancer regulatory variation

[12,65] and cell-specific TF-binding sites in time and space, repre-

sents a reliable starting point for reaching transcriptional program

mapping.

Nonlinear transcription druggable targets
This transcriptome-mapping-based comparison of groups of

patients with or without recurrence or metastasis progression

can open two innovative research directions. First, theoretical

targeting of deregulated physical contact of cancer-cell-specific

TFs with regulatory sequence variation in promoters and distant

enhancer areas [66,67] with novel drugs could inhibit misregu-

lating nonlinear transcription. Second, a revolutionary thera-

peutic strategic target could be the elimination or inactivation

of cancer cells by disrupting intracellular and extracellular

networks [68]. But this is a more distant future goal that will

require breakthrough technologies and methods for clarifying

how point mutations and large structural genome changes such

as copy number alternations (CNAs) and genomic rearrange-

ments affect and misregulate dynamics of transcriptional net-

works.

Cellular signaling networks
Exciting research on the comprehensive intracellular signaling

pathway interaction network using a variety of living cell imaging

with biosensors [69] and computational methods [70] for

understanding intracellular signaling pathways, as well as pro-

tein–protein interactions and interactome [71], transcriptional

biocircuits and gene–gene interplay [72], is crucial for under-

standing cell behavior and cancer cell deregulation. Exploring

the potential discovery of nonlinear transcriptional druggable

targets appears a more realistic future therapeutic goal than the

high complexity of interactome [73] or gene–gene interaction

networks in the pharmaceutical industry [72].

Future challenges
Although there are several optimistic reports on network-based

therapeutics for breast cancer [74] and other tumor types [70],

nonlinear transcription-based agents still remain a research

dream. Future systematic work will be required for understanding

transcription initiation by RNA polymerase II (pol-II) [75], iden-

tification of cancer-cell-type-specific TFs and mapping of

TF-binding sequencing-specific variation. Given that most dis-

ease and cancer-associated variation identified by the Genome

Wide Association Study (GWAS) lies outside genes [6], comple-

tion of the noncoding cancer regulatory variation as well as

promoter–enhancer regulation appears essential [67]. Moreover,

further research will be needed for the identification of long

noncoding RNAs (lncRNAs) and epigenetic changes. Although

substantial progress can be expected over the next decade in this

field, the bigger challenges of the future will be how it might be

possible to integrate all these big data into network modeling to
understand and predict dynamics of transcriptional biocircuits.

However, despite advances in network science, dynamics of net-

work biology [76] and network medicine [7,77], regulatory net-

work mechanisms underlying health and disease remain poorly

understood. During the long period of life evolution, a tremen-

dous number of disease-associated mutations have accumulated.

This mutational landscape has emerged not only according to

Darwinian theory but also as a result of nonadaptive origins,

resulting in interactome complexity [73]. In the long evolution-

ary history, high network complexity has been developed as a

regulatory network mechanism to overcome structural genome

changes. The interplay of genome, transcriptome and RNA bio-

systems and the feedback mechanism between genome deficiency

and nonlinear transcription further increase the complexity of

transcriptional biocircuits and cellular signaling pathway net-

works representing an autoprotective mechanism to overcome

cancer driver mutations. Therefore, there has been skepticism

about whether these sophisticated or nearly chaotic networks [78]

could be predicted.

Comparison of linear and nonlinear strategies
There has been uncertainty in the time period required for under-

standing and predicting transcriptional networks and the safety

and effectiveness of drugs disrupting transcriptional networks

remains unclear. Therefore, most hope for funding pragmatic

nonlinear transcription-based development of nonlinear agents

will probably result from the public sector. Despite limitations in

funding highly complex basic genome and network science by the

private sector with uncertainties regarding the period required to

achieve genome network medicine in cancer [3], a rational precise

research roadmap by the public sector has been started. With

systematic work and innovation in genome technologies coupled

with bioinformatics strategies, we hope that the time to achieve

translation of transcriptional-biocircuits-based drugs into clinical

NGPCM will be less than the 60 years that have been spent shifting

from the linear transcription dogma to dynamics of transcription-

al networks.

Concluding remarks
Designing the development of next-generation therapeutics, pre-

dicting and targeting dynamics of intrapatient genetic and geno-

mic variation comprise the most rational roadmap to overcome

therapeutic resistance and death. We are facing a crossroads. The

first strategy of the traditional single gene/signaling pathway

concept can dramatically increase the number of linear drugs

targeting simple intrapatient structural genome diversity. This is

a realistic approach potentially applicable in a medium-term

perspective. The second highly complex roadmap to reach non-

linear drugs is just now beginning. Although it is based on truly

organized transcriptional networks, much innovation will be re-

quired to understand interacting multiple gene/signaling pathway

networks for discovering next-generation therapeutics blocking

transcriptional biocircuit systems. Although this ENCODE-based

transcriptional program functionality effort can revolutionize

cancer therapy, it is a more distant future goal, attracting at present

little investment by the pharmaceutical industry. This limited

funding can be explained by the longer time required for financial

benefit by the private sector.
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